Description of Assessment 2 Grade Point Averages in math courses required of all candidates

1. Narrative

1a. Description of assessment.

Candidates' grade point averages of courses required of all candidates in the MAT program are being used for assessment 2. All of the candidates in our MAT program seek certification in Adolescence Education: Mathematics (grades 7 - 12).

It is important to note that until the Spring semester of 2013, when the new Program Coordinator assembled a 3-member MAT admissions committee (two members of the mathematics department and the Coordinator, herself), that an official protocol for admitting candidates to the MAT Program was established. This protocol includes establishing what undergraduate mathematics courses potential candidates have to take before being admitted to our program. The required prerequisite undergraduate courses are as follows: courses equivalent to our Calculus and Analytical Geometry 1, 2, and 3 (MA2310, MA2320, MA3330, respectively), Discrete Mathematics (MA3030), Linear Algebra (MA3160), and Introduction to Probability & Statistics (MA3210).

Twelve courses are *required* of all candidates in the MAT program: 6 graduate courses and the 6 prerequisite undergraduate courses identified by the MAT admissions committee. Since the 11 program completers reported here were admitted to the program before Spring of 2013, we do not have their individual grades for the 6 prerequisite undergraduate courses.

As stated in the School of Education Graduate Catalog

(http://www.oldwestbury.edu/sites/default/files/documents/Graduate-Education-Catalog-2010-13.pdf), the SOE uses a 14 letter-grade system consisting of A, A-, B+, B, B-, C+, C, C-, F, CR (credit), NC (no credit), I (incomplete), W (withdrawal), and NR (not reported). All grades with the exception of CR, NC, I, W, and NR are calculated in candidates' respective GPAs. Grade points awarded for each grade can be found in section 2f. When a candidate repeats a course, if the new grade is higher, it replaces the old grade in the GPA computation. All grades, however, remain on the student's transcript. Grades for courses that were taken at another institution are accepted as transfer grades if and only if the college has found those courses to be equivalent to Old Westbury courses. Transfer grades are included in the GPA computation for this report.

Mathematics department policy dictates that grades of C- or lower earned in required courses do not satisfy degree requirements. For this reason, all program completers have earned at least a C in their required courses. For the candidates whose data is being used for this report, this means graduate courses only. In future reports this policy will include both the 6 graduate mathematics courses and the 6 prerequisite undergraduate mathematics courses.

1b. Alignment between the Assessment 2 and the NCTM CAEP 2012 Content Standards.

A course-by-course alignment between course alignment and the content standards was identified by a committee consisting of four faculty members: the mathematics department chair, two full-time mathematics professors, and the coordinator for the Adolescence Education: Mathematics Program, who is both a member of the School of Education and the mathematics department. A table identifying the alignment can be found in Appendix A at the end of this document.

1c. Analysis of data findings.

Grades were obtained from an examination of each candidate's transcript. GPAs were computed separately using only those courses required of all candidates per SPA requirement.

Our first cohort of program completers graduated in Spring 2012.

1d. Interpretation of data.

Course GPA and corresponding grade distribution are summarized in the tables found in section 2g. Numerically speaking, the ranges of course GPAs show an increase from the 2011 - 2012 program completers (Group 1; 2.7 to 3.85) to the 2012 - 2013 program completers (Group 2; 3.42 to 4.0) and then a decrease for the 2013 - 2014 program completers (Group 3: 2.57 - 3.67). With the exception of MA6100 (Probability and Statistics) for which the course GPA dropped (3.5 to 3.42 to 3.07), all required courses reflect the same increase then decrease pattern for the three groups of program completers. The averages GPA of candidates in the three years of data being reported are all above 3.0.

The small numbers of program completers (i.e., 2, 6, and 3 respectively) make interpretation of the data difficult.

2. Assessment Documentation

2e. Assessment tool.

Grade point averages of mathematics courses required to earn an MAT degree. Grades are obtained from an examination of each candidate's transcript(s).

Courses taken by candidates as part of the MAT program:

MA6100 – Probability & Statistics

MA6150 – Geometry

MA6200 – Algebra

MA6250 – Analysis

MA6400 - Topics in Adv. Mathematics and Technology

MA7500 – Topics in Mathematics and Mathematics Education

Courses equivalent to the following undergraduate mathematics courses taken before

being admitted to the MAT program:

MA2310 – Calculus & Analytic Geometry 1 MA2320 – Calculus & Analytic Geometry 2 MA3030 – Discrete Mathematics MA3160 – Linear Algebra MA3210 – Introduction to Probability & Statistics MA3330 – Calculus & Analytic Geometry 3

f. Scoring guide.

Each semester grade is determined by the corresponding professor as described by the course syllabus. Grade point awards are determined by the college and are as follows:

$$\begin{array}{ccc} B+=3.5 & C+=2.5 \\ A=4.0 & B=3.0 & C=2 & F=0 \\ A-=3.7 & B-=2.7 & C-=1.7 \end{array}$$

2g. Candidate data derived from Assessment 2. Table 1. Mean scores by course over 3 years

Grades * in Required in Mathematics and/or Mathematics Education Courses Adolescence Education: Mathematics 7-12									
	MAT Program Completers								
*A = 4.0, A- =	= 3.7, B + = 3.	5, B = 3.0, B	-=2.7, C+=2	2.5, C = 2.0, C	C = 1.7, F = 0)			
		2011-2012			2012-2013	-		2013-2014	-
Course Number and Name	Mean Course Grade* and (Range)	Number of Completers	% of Completers Meeting Minimum Expectation	Mean Course Grade* and (Range)	Number of Completers	% of Completers Meeting Minimum Expectation	Mean Course Grade* and (Range)	Number of Completers	% of Completers Meeting Minimum Expectation
MA6100 Probability & Statistics	3.5 (3.5 – 3.5)		100	3.42 (3.0 – 4.0)		100	3.07 (2.7 – 3.5)		100
MA6150 Geometry	3.85 (3.7 – 4.0)		100	3.95 (3.7 – 4.0)		100	3.67 (3.0 – 4.0)		100
MA6200 Algebra	2.7 (2.7 – 2.7)		100	3.73 (3.0 – 4.0)		100	2.57 (2.0 - 3.0)		100
MA6250 Analysis	2.85 (2.7 – 3.0)		100	3.61 (3.0 – 4.0)		100	3.57 (3.0 – 4.0)		100
MA6400 Topics in Adv. Math and Technology	3.0 (3.0 - 3.0)	•	100	3.75 (3.0 – 4.0)		100	3.5 (3.0 – 4.0)	•	100
MA7500 Topics in Mathematics and Mathematics Education	2.75 (2.5 - 3.0)		100	4.0 (4.0 – 4.0)		100	3.23 (2.0 - 4.0)		100

Table 2. Mean GPA by academic year

Mean GPA * in Required in Mathematics and/or Mathematics Education Courses						
	Adolescence Education: Mathematics 7-12					
	MAT Program	m Completers				
*A = 4.0, A- = 3.7, B+ = 3.3, B =	*A = 4.0, A- = 3.7, B+ = 3.3, B = 3.0, B- = 2.7, C+ = 2.3, C = 2.0, C- = 1.7, F = 0					
Academic Year	Mean GPA* and (Range)	Number of Completers	% of Completers Meeting Minimum Expectation			
2011 - 2012	3.11 (3.02 – 3.20)		100			
2012 - 2013	3.80 (3.5 - 4.0)		100			
2013 - 2014	3.27 (3.02 - 3.7)		100			

Appendix A Course Alignments

NCTM Standard	Course Number	Course Components Addressing Cited
Elements Addressed by	and Name	Standard Elements
Course(s)		
1a) Demonstrate and apply	MA2310 –	Refer to NCTM CAEP Mathematics
knowledge of major	Calculus and	Content for Secondary Alignment Table
mathematics concepts,	Analytical	attached to the program report.
algorithms, procedures,	Geometry1	
applications in varied	MA2320 –	
contexts, and connections	Calculus and	
within and among	Analytical	
mathematical domains	Geometry 2	
(Number, Algebra,	MA3160 – Linear	
Geometry, Irigonometry,	Algebra	
Statistics, Probability,	MA3030 – Discrete	
Mathematics) as outlined	Math	
in the NCTM NCATE	MA3330 –	
Mathematics Content for	Calculus and	
Secondary.	Analytical	
	Geometry 3	
	MA3210 –	
	Introduction to	
	Probability &	
	Statistics	
	MA6100 –	
	Probability &	
	Statistics	
	MA6150 –	
	Geometry	
	MA6200 – Algebra	
	MA6250 –	
	Analysis	
	MA6400 – Topics	
	in Adv.	
	Mathematics and	
	Technology	
	MA7500 – Topics	
	in Mathematics	
	and Mathematics	
	Education	

2a) Use problem solving to	MA3030 – Discrete	Candidates are introduced to proof
develop conceptual	Math	techniques (e.g., direct proof, proof by
understanding, make sense		induction, proof by contrapositive, and proof
of a wide variety of		by contradiction). Candidates are asked to
problems and persevere in		apply these proof methods in the context of a
solving them, apply and		number of contexts (e.g. number theory
adapt a variety of		sets) and as part of proposing and proving
strategies in solving		generalizations. Candidates are asked to
problems confronted		solve problems related to real world
within the field of		phenomena such as the use of graphs and
mathematics and other		trace in the study of scheduling problems and
contexts, and formulate		trees in the study of scheduling problems and
and test conjectures in		in transportation.
order to frame		
generalizations.	MA3160 – Linear	Candidates are given multiple opportunities
	Algebra	to solve problems and develop new problem
		solving strategies as they study two- and
		three-dimensional spaces in new contexts
		(e.g., matrices, systems of equation,
		determinants, vectors, and linear
		transformations). In this study they learn
		new learn representations (e.g., vectors as
		ordered pairs and vectors as matrices), and
		new procedures to solve problems.
	MA 6100 –	Candidates are asked to solve problems that
	Probability and	are set in real-world and other contexts that
	Statistics	require them to determine, for example,
		which distribution is required, and justify
		their choice of distribution.
	MA 6150 –	Use of software such as GeoGebra to may
	Geometry	sometimes help a student test conjectures and
		formulate a proof
		Candidates solve a wide variety of problems
		(i.e., homework exercises) in Euclidean
		geometry and this helps in understanding the
		concepts and techniques and theorems
	MA 6200 – Algebra	As part of this course, candidates "discover"
		properties of the number systems. They
		model these properties in numbers by
		creating abstract structures (rings and groups)
		that generalize properties. Candidates go on
		to prove that given abstract structures satisfy
		(or fail to satisfy) the list of properties (thus
		verifying that it is a group or ring).

	MA 6250 –	In Calculus and Analytical Geometry 1 & 2
	Analysis	candidates learned a non-rigorous version of
		limits. In this course they learn what limits
		are rigorously and what the Real Numbers
		are rigorously. Candidates study the axioms
		that define the number systems.
	MA 6400 – Topics	Candidates solve problems (abstract and real
	in Advanced	world) for which the use of technological
	Mathematics and	tools (e.g., Mathematica, Maple) play an
	Technology	important role in helping candidates to
		develop understandings of complex ideas.
		Using the tools candidates formulate and test
		conjectures on their way to solving problems.
2b) Reason abstractly,	MA3160 – Linear	Candidates study two- and three-dimensional
reflectively, and	Algebra	spaces in new contexts (e.g., matrices,
quantitatively with		systems of equation, determinants, vectors,
attention to units,		and linear transformations) and new
constructing viable		mathematical objects. They learn the
arguments and proofs, and		axiomatic definition of vector spaces, and
critiquing the reasoning of		thereby abstract certain properties of R ⁿ ;
others; represent and		candidates develop their mathematical
model generalizations		vocabulary to include terms such as
using mathematics;		subspace, basis, linearly independent; and
recognize structure and		candidates develop their understanding of
express regularity in		these concepts when they determine whether
patterns of mathematical		a specified set of vectors forms a subspace, or
reasoning; use multiple		basis, or is linearly independent, etc.
and describe mathematics:		Using the new mathematical objects (e.g.,
and utilize appropriate		matrices, vectors), candidates are given many
mathematical vocabulary		opportunities to reason abstractly and
and symbols to		quantitatively about 2- and 3-space.
communicate	MA 6100 –	As part of their study of mathematical laws
mathematical ideas to	Probability and	of random phenomena, expectation and
others.	Statistics	variance, probability distributions, candidates
		examine fundamental properties of
		Probability and asked to prove them.
	MA 6150 –	Candidates learn multiple approaches to
	Geometry	geometry - e.g. through an axiomatic way, or
		through a transformation-based way
		(Erlangen program).
		Candidates construct proofs of geometrical
		propositions and in doing so learn to reason
		abstractly, represent and model
		generalizations using mathematics.

		Candidates are asked to share their proofs in class and provide feedback to their classmates
	MA 6200 – Algebra	Candidates continue their study of abstract algebraic structures (e.g., groups, rings, Integral domains, and fields) at a more in- depth level. Working in these algebraic structures, candidates demonstrate their ability to reason abstractly and reflectively in a rigorous and formalized format by constructing rigorous proofs. Communication of their arguments/proofs is required to be written in correct logic and presented clearly
		and precisely. Candidates are often asked to
		share and provide feedback to their fellow
		in class.
	MA 6250 –	Candidates are introduced to rigorous real
	Analysis	analysis in this course. Candidates are
		required to reason about abstract ideas and formulate proofs of properties/theorems and
		communicate their proofs precisely and
		clearly in writing. Candidates are
		encouraged to share and discuss their proofs
	MA2210 C 1 1	in class.
analyze, and interpret mathematical models derived from real-world	and Analytical Geometry1	situations using functions (e.g., polynomial, trigonometric, exponential, and logarithmic) and use to the derivative to optimize the
contexts or mathematical		given situation. Candidates are also given
problems.		functions and use the derivative to locate
		maximum/minimum points, zeroes, determine intervals of increase/decrease and intervals of positive/negative concavity.
	MA2320 – Calculus and Analytical Geometry 2	Candidates are asked to use integrals to model real-world situations using functions (e.g., polynomial, trigonometric, exponential
	Geometry 2	and logarithmic) and to compute areas of regions and volumes of solids. Candidates
		use integration techniques to solve problems set in real-world contexts (e.g., finance,
	MA3330 - Calculus	As candidates in MA3330 learn the
	and Analytical	techniques of multivariable calculus, ideas
	Geometry 3	are applied to physical phenomena such as
		trajectories through space and basic problems

		in physics. Candidates apply later techniques
		in vector fields to model problems in fluid
		flow and force fields
	MA 6100 -	Applying probability models to real world
	Probability and	situations is an emphasis of the course. Some
	Statistics	models include wait times (Poisson
	Statistics	Distribution) life expectancy (Exponential
		Distribution), the expectate y (Exponential
		Distribution, survey results (Dinomial
	MA 6150 -	Candidates study projective geometry, which
	Geometry	is a mathematical model derived from the
	Geometry	study of perspective in art and Euclidean
		geometry which is also derived from real
		word context. As part of this study they
		asked to solve problems in these geometries
		as next of proving propositions/proportion
	MA 6400 Tarica	The topics years from competents competents.
	$\frac{1}{1000} = 10000000000000000000000000000000$	where there are two elements. One is a
	III Advanced Mothematics and	technological tool such as Manle or SAS
		Condidates are solved to solve real
	Technology	Candidates are asked to solve real-
		world/realistic problems who complexities
		require the use of technological tools to assist
		them in analysis, interpreting and/or
	NA (100	representation.
2 d) Organize mathematical	MA 6100 -	Candidates are required to solve problems
thinking and use the	Probability and	and to formulate and write proofs of
to express ideas presisely	Statistics	properties/theorems in the fields of
both orally and in writing		probability and statistics. Candidates are
to multiple audiences		required to express their ideas using the
to multiple addiences.		language of mathematics in their proofs and
		in class discussions of mathematical ideas
		being examined in the each lesson.
	MA 6150 -	Candidates are required to solve problems
	Geometry	and to formulate and write proofs of
		properties/theorems in the different
		geometries they study in this course (e.g.,
		projective, hyperbolic, Euclidean).
		Candidates are required to express their ideas
		using the language of mathematics in their
		proofs and in class discussions of
		mathematical ideas being examined in the
		each lesson.
	MA 6200 – Algebra	Candidates are required to solve problems
		and to formulate and write proofs of
		properties/theorems in the algebra.
		Candidates are required to express their ideas

		using the language of mathematics in their proofs and in class discussions of mathematical ideas being examined in the each lesson.
	MA 6250 – Analysis	Candidates are required to solve problems and to formulate and write proofs of properties/theorems in real analysis. Candidates are required to express their ideas using the language of mathematics in their proofs and in class discussions of mathematical ideas being examined in the each lesson.
	MA 6400 – Topics in Advanced Mathematics and Technology	Candidates are each required to do a project in this course in which he or she demonstrates a mathematical solution to a real-world problem using technology. Candidates' solutions to their problem are submitted in writing and shared with the class in a presentation.
	MA 7500 – Topics in Mathematics and Mathematics Education	Candidates are each required to do a project in this course on a topic taken from secondary mathematics. Candidates' write a paper on this topic and share their project with the class
2e) Demonstrate the interconnectedness of mathematical ideas and how they build on one another and recognize and apply mathematical	MA3030 – Discrete Math	Candidates are asked to draw upon their knowledge of school mathematics in conjunctions with understandings of ideas learned in their college courses (e.g., number theory, set theory, and calculus) to learn methods of proof and proving.
connections among mathematical ideas and across various content areas and real-world contexts.	MA3330 – Calculus and Analytical Geometry 3	Candidates combine their existing knowledge in 2- and 3-diemsnional geometry and trigonometry with the notions of single- variable calculus to develop dot- and cross- products, as well as techniques in multiple integration and differentiation, cumulating with the combined analytic and geometric approach to vector fields and the fundamental theorems of multivariable calculus (Green's theorem and the divergence theorem).
	MA 6100 - Probability and Statistics	Candidates are given multiple opportunities to make connections between ideas of Probability and Statistics and other areas of mathematics in their proofs of properties they encounter in this course. They use their understandings of series from Analysis, for

	example, in their proofs of properties of the
	Poisson Distribution or properties of the
	geometric distribution. The binomial
	formula, which candidates typically see as an
	algebraic topic is examined from the
	standpoint of probability.
MA 6150 –	Candidates are given multiple opportunities
Geometry	to make connections among the geometries
Sconicaly	they study in this course. For example, they
	examine inversive geometry is connected to
	complex numbers, and how that can be used
	to model hyperbolic geometry
	Starting from basic axioms of geometry
	starting from basic axioms of geometry,
	on one another. Condidates demonstrate the
	interconnectedness of they prove
	merconnectedness as they prove
MA 6200 Alashas	propositions that are new (to them).
MA 0200 – Algeora	Candidates are given multiple opportunities
	to make connections between ideas of
	Algebra and other areas of mathematics in
	their proofs of properties they encounter in
	this course. For example, they examine the
	space of functions or polynomials, a topic
	from Analysis, and show the space to be a
	group or a ring.
MA 6250 –	Candidates are given multiple opportunities
Analysis	to make connections between ideas of
	Analysis and other areas of mathematics in
	their proofs of properties they encounter in
	this course. The real numbers, for example,
	are defined and proven to be a field, a
	mathematical idea they study in Algebra.
MA 6400 – Topics	Candidates are each required to do a project
in Advanced	in this course in which he or she
Mathematics and	demonstrates a mathematical solution to a
Technology	real-world problem using technology. As
	part of solving their selected problems,
	candidates have to make decisions about
	what field of mathematics and corresponding
	ideas/methods to use in their solution.
MA 7500 – Topics	As part of this course, candidates study
in Mathematics and	historical development of mathematics.
Mathematics	Using history as a lens, candidates examine
Education)	interconnectedness of the many fields.
MA 6200 – Algebra	Candidates are required to write proofs in this
	course Condidates use the methematical

		practices of problem solving and reasoning as
		they formulate their proofs and the
		connecting and representing in their writing
		as they communicate their arguments
	MA 6250	as they communicate their arguments.
	MA 0230 -	candidates are required to write proofs in this
	Analysis	course. Candidates use the mathematical
		practices of problem solving and reasoning as
		they formulate their proofs, and the
		connecting and representing in their writing
		as they communicate their arguments.
	MA $6400 - 10pics$	Candidates are each required to do a project
	in Advanced	for which the use of technological tools plays
	Mathematics and	a major role in helping them solve a real-
	Technology	world problem. Candidates use the
		mathematical practices of problem solving
		and reasoning as they formulate use tools to
		formulate their respective solutions, and the
		practices of connecting and representing in
		their writing as they communicate their
		solutions.
2f) Model how the	MA3030 – Discrete	Candidates are asked to draw upon their
development of	Math	knowledge of school mathematics in
mathematical		conjunctions with understandings of ideas
understanding within and		learned in their college courses (e.g., number
among mathematical		theory, set theory, and calculus) to learn
mothematical practices of		methods of proof and proving.
problem solving	MA 6400 – Topics	Candidates are each required to do a project
reasoning communicating	in Advanced	in this course in which he or she
connecting and	Mathematics and	demonstrates a mathematical solution to a
representing	Technology	real-world problem using technology. As
presenting.		part of solving their selected problems,
		candidates have to make decisions about
		what field of mathematics and corresponding
		ideas/methods to use in their solution.
		Solving the problem candidates choose
		require mathematical reasoning, making
		connections to mathematics. Candidates
		present their project to the class. In preparing
		for the presentation candidates make
		decisions about how to communicate and
		represent their thinking and their solution
		process(es).
	MA 7500 – Topics	Candidates are each required to do a project
	in Mathematics and	in this course on a topic taken from
	Mathematics	secondary mathematics. Candidates' write a
	Education	paper on this topic and share their project

	with the class. In preparing for the
	with the cluss. In propuling for the
	presentation candidates make decisions about
	how to communicate and represent their
	thinking and their solution process(es).